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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1703

HYDROMAGNETIC STAGNATION-POINT BOUNDARY LAYER

WITH ARBITRARY PRESSURE GRADIENT

AND MAGNETIC FIELD

By Willis H. Braun

The series-expansion method of H. C_rtler is applied to the two-dimensional

stagnation flow about symmetric bodies with symmetric distributions of magnetic

field. Numerical computations are presented from which skin friction and heat

transfer can be calculated through third order in a modified surface coordinate

provided the external velocity, magnetic field, and enthalpy are known. A small

magnetic Reynolds number is assumed; the Prandtl number is taken to be unity.

The three chosen values of an interaction parameter represent magnetic fields in

which the component normal to the wall has values at the stagnation point that

are zero, small_ and large.

INTRODUCTION

The discussions of the hyd_omagnetic flow at a two-dimensional stagnation

point presented in the literature have in each case been similarity treatments.

With the velocity outside the boundary layer varying as the distance from the

stagnation point, the normal component of the magnetic field is constant. In

reference i it is pointed out that the skin friction was markedly reduced by the

action of the normal magnetic field. Later investigations (refs. 2 to %) showed

that the effect upon heat transfer was not as strong. Reference S treats this

problem when the fluid is compressible, while reference 6 discusses the corre-

sponding axisy_netric boundary layer.

In this report the restriction to similarity will be relaxed so that stagna-

tion flows around s_mmetric, blunt bodies of otherwise arbitrary shape and with

symmetric but otherwise arbitrary distributions of magnetic fields may be

studied. For this purpose, the series-expansion method of GZrtler (refs. 7

and 9) will be extended to flows with magnetic fields present. In addition to

its ability to handle arbitrary pressure gradients, the GZrtler method has the

feature, in contrast to the usual expansion in the stremmwise coordinate_ that

the first term (zero order) of the series solution matches the outer velocity at

the edge of the boundary layer at all stations along the body. Subsequent terms

represent corrections to the velocity profile that are due to action within the

boundary layer itself. Althou_h the series does converge rapidly, C_rtler found



that, for stagnation-point flows_ this series was not more advantageous than the
well-known Blasius series; however, for the present purpose of extension to mag-
netic effects, the G_rtler series has the advantage that the nonmagnetic
bounds_'y-layer terms have already been computedto a high degree of precision.
This is a convenience in undertaking further numerical computations.

Several extensions of G_rtler's work have already been made. The tempera-
ture has been developed in a GBrtler series (refs. 9 and I0), and the case of the
flow over a flat plate with a current-carrying wire near its surface has been
solved in reference Ii. The developments discussed in this report are all based
on the ass_nption that the magnetic Reynolds number is small.
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SYMBOLS

magnetic field

dimensionless magnetic field

heat capacity

differential operator

electric field

reduced stream function

higher order stream functions, where (i,j,k) = (0,1,2,3)

higher order enthalpy functions, where (i,j,k) = (0,i,_,5)

dimensionless enthalpy difference

enthalpy

heat conductivity

characteristic length

differential operator in eq. (54)

pressure

Prandtl number
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P

q

Rh

Rho

Rhl

Rm

Re

Re 1

T

t

U,V

U e

U

u_v

u

X,Y

z(e)

v

dimensionless pressure

heat transfer

magnetic pressure number

magnetic pressure number for symmetric magnetic field, defined by eq. (65)

magnetic pressure number for antisymmetric magnetic field, defined by

eq. (G_b)

magnetic Reynolds number

magnetic Reynolds number based on stream-velocity gradient at X = O, de-

fined by eq. (62a)

Reynolds number

Reynolds number based on stream-velocity gradient at X = O, defined by

eq. (56)

temperature

time

velocity components in X- and Y-directions

velocity external to boundary layer

velocity

dimensionless velocity components

dimensionless velocity

coordinates along and normal to body surface

principal function, defined by eq. (27a)

boundary-layer thickness

boundary-layer coordinate

magnetic interaction coefficient, defined by eq. (27b)

magnetic permeability

kinematic viscosity

coordinate in stresmwise direction
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0

Subscripts :

O

X_Y

0_i_2_

Superscripts :

T!

.%

density

electrical conductivity

skin friction

stream function

vort icity

reference quantity

vector components

partial derivatives

coefficients in a series expansion

first derivative

second derivative

intermediate variable

FLOWS AT SMALL MAGNETIC REYNOLDS NUMBER

A body, immersed in a conducting fluid, from which there emanates a magnetic

field is considered. The fluid has constant electrical conductivity, density,

viscosity, thermal conductivity, and heat capacity. Under the further restric-

tions of steady velocity field and steady magnetic field, the governing equations

for the motion of the fluid are

V" U=O

P P

(i)

(2)

The action of the velocity field upon the magnetic field is described by the

equation

= -uov x (1 x £) (3)

One important restriction placed upon equations (Z) and (5) is the representation

of the electrical conductivity as a scalar _. If the fluid is a gas, it must be

sufficiently dense for the mean free path of a charged particle to be much

smaller than the radius of gyration in the magnetic field. Equations are -written

in mks units.



In order to find the dimensionless parameters that characterize the various
forces involved in the motion, a characteristic velocity Uo, a characteristic
value of the magnetic field Bo_ and a characteristic length L, which is assumed
to characterize both the body and the magnetic field_ are used to nondimensional-
ize. The aforementioned assumption is justified if the currents generating the
magnetic field are not too close to the body surface; if they are near the body
center, the radius of curvature of the field at the body surface must be compar-
able to the radius of curvature of the body. If the dimensionless dynamic vari-
ables are denoted by lower-case letters_ the governing equations (eqs. (i) to
(S), respectively_) become

• _ : 0 (,_)

[E_ × )• : -_o + Kg RmRh
\%%

(6)

The parmneters that appear are the magnetic pressure number Rh _ Bg/_pU_

and the magnetic Reynolds number Rm _ _UoL _ which is common to the interaction

terms of equations (5) and (6). In the following work Rm is considered to be

small, but at this point no restriction is placed on Rh. It is appropriate,

then, to _rite the series (ref. 12):

: + + + Q

2
P : Po+ + + "

The electric field E is the field measured by an observer at rest with re-

spect to the body. In general, the electric field is the result both of any ex-

ternal generators and of the separation of charges by the electromotive force

X _. While the first of these is excluded_ the second effect may arise either

from the polarization of molecules or from the separation of free charges so that

the fluid is not electrically neutral everywhere. The permittivity of the fluid

is assumed to be constant everywhere, and the flow is assumed to be truly two-

dimensional with no end effects. Then E may be set equal to 0 because the

fluid is neutral and because the polarization field, when added to the electromo-

tive force, reduces the effective conductivity by the same factor over the entire

field. Another justification for choosing E = 0 is to consider the two-

dimensional geometry as the limit of an axisymmetric geometry as the radius be-

comes very large. Inasmuch as the electric potential must be continuous along a

circular path about the axis of symmetry, the azimuthal component of the electric

field must vanish (ref. 13).

Equations (4) to (6), respectively, become to lowest order

v. % : o (8)
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_0
__0

v_ o = o (io)

According to equation (i0), the magnetic field is unaffected by the motion of the

fluid to the order indicated, but the velocity field will, in general, be dis-

turbed by the magnetic field because the range of Rh is unrestricted and the

product RmR h may be of order unity or greater.

BOUNDARY-LAYER ANALYSIS

The dimensional momentum equation for the fluid and the modifications re-

sulting from the assumption of a viscous boundary layer shall be considered now.

In a two-dimensional geometry let the X-coordinate be along the body while the

Y-coordinate is normal to the body. The corresponding components of velocity are

U and V. The components of the Lorentz force are proportional to

-U_ + VBxJ3Y (lla)

and

+  xBy (llb)

If 5 is characteristic of the boundary-layer thickness, then

f ~ £ << i (12)
U L

Consequently, the force terms reduce to

-UB_ (15a)

and

In the inertia and viscous forces certain terms also drop out, because the ratio

of boundary-layer thickness to body curvature 5/L is small. The final form of

the momentum equation is

i _P _Zu
(14)

_P

0 = o_SxS_ - _ (is)

From equations (IA) and (15) it follows that
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_P
_-_~RmRh (16)

As long as this product remains of order unity or less, it is permissible to re-
place the streamwise pressure gradient in the boundary layer with the streamwise
pressure gradient in the external stre_m_ for then the pressure increment across
the boundary layer is _(5/L) comparedto the pressure drop along the body. The
pressure gradient is obtained by writing equation (14) at the edge of the bound-
ary layer

_ l_P
Ue X_'-f-"= (17)

In equation (17) the value of By at the edge of the boundary layer may be
equated to the value at the wall. Subtracting equation (17) from equation (14)

results in a form of the boundary-layer equation that is free of the pressure

gradient:

_U _U a ByZUe (i _e) dUe _2Uu_+v_-_- - -Ue-_-=V_6yZ
(18)

The boundary conditions to be used with this equation are that U vanish at

the body surface and approach the velocity of the inviscid stream at the outer

edge of the boundary layer. The second of these must be used with care. The in-

teraction of the magnetic field and the velocity field produces a vorticity in

the inviscid stream. If the vorticity in the inviscid stream approaches in mag-

nitude the vorticity due to viscosity in the boundary layer, it is necessary to

augment the boundary condition at the outer edge of the boundary layer by a

matching of the velocity derivatives. In a two-dimensional incompressible flow,

the vorticity production is given by

The first term on the right represents the generation of vorticity by viscous ac-

tion in the boundary layer; its approximate magnitude is wUe/S5. The second

term is the vorticity production by the Lorentz force; which has an approximate

magnitude eUeB2/0L. The two lengths appearing are related by the Reynolds

number :

(L/5 Z ~ Re

It follows that

Vorticit[ production in inviscid flow
Vorticity production in boundary layer

_m_
(zo)

As long as



it _s pe_lissible to match boundary-layer and inviscid-flow velocities at the
edge of the boundary layer. Otherwise, it is necessary to use the boundary con-
d_tion involving velocity derivatives. The restriction (21) on Rh is generally
not as severe as the previous restriction (16). It is assumedin the following
discussion that the ratio (20) is small.

APPLICATIONOFGORTLERTRANSFORMATION

Following G_rtler (ref. 7) the boundary-layer equation (eq. (18)) will be
transformed to a system of ordinary differential equations. First, there are de-
fined the dimensionless variables

i/ox: _ Ue(X)aX
V

1
= V Ue(X)Y

^ _ U
Y_ Ue

" " $2(t u_Yu)V = -_i = U ev +

Substituting these variables in equation (18) results in

M h

u_{+ v_ -S(!)(_-_2) _i(i)(1- _) : u_

where

A ^ vU$
_({) _

ou[

(zz)

Next, the Blasius transformation

__%_

.-_ A A*(__,n) = VFgF(_,n)

(£5)

is employed in equation (23) to obtain

F:U]_ + FFq_ + _(_)(i- F_])+ h(_)(l- F_)= 2_(F_F_- F{F_)

(as)

(26)
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where

,%

2._o_yBtz-

x(_) = u£
P e

Equation (26) is GZrtler's equation for a boundary layer in an arbitrary pressure

gradient with the addition of the term containing h(_), which represents the in-

fluence of the magnetic field on the flow. The parameter h({) combines the ef-

fects of the magnetic field distribution and the outer velocity distribution.

The boundary conditions associated with equation (26) have also been devel-

oped by GZrtler (ref. 12). The requirement that the stream function vanish on

the surface is

F(_,o) = 0 (28a)

_ne condition of no slip (U = O) on the surface becomes

and the matching condition at the edge of the boundary layer, U = Ue, transforms
to

A system of ordinary differential equations can be derived from equa-

tion (Z6) by first expanding the reduced stream function F(_,_) and the param-

eters _(_) and 5(_) in power series in {:

_(_) = Po + Pz_ + • ]

x(_) = xo + _l_ + •

F(_,S) = F0(h) + Fl(q)[ + F2(h)_ 2 + .

(29)

When equations (29) are substituted into equation (26) and coefficients of like

powers of

the functions

(50, @l,

tion

are equated, an ordinary differential equation in _ for each of

F0(_), FI(_)_ results. The expansion coefficients

and _0_ }_i, •) depend upon the external velocity distribu-

U e = U 0 + UIX + . (3o)

and the distribution of normal magnetic field at the surface

By : B0 + BIX + (5i)
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The coefficients

listed in a later section.

The equation governing the zero-order stream function is

F;"+F_;+_0(1-F_2)+_(1-F;)=0

The associated boundary conditions are

Fo(O ) -- Fd(O) : O)
F6(_) -- i

A differential operator appearing in the equations for the subsequent

fined by

! !
LnFn _ -n_'"+ FoF_ - 2(130 + n)FoFn - )_oF_ + (2n + 1)F_" n

Then

_n and h n for symmetric blunt bodies and magnetic fields are

(s2)

(s3)

F n is de-

(s4)

LIF I = _I(F6 2 - i) - kl(l - F_)

L2F 2 = _2(F_ 2 - i) + 2_iF_i + (_0 + 2)FI Z - 3FiF_

- _2(i - F$) + hlFl (3_)
!

L3h= h(Fg2-i)+_lFl2+_IFgF_+_hFgFI I

Jt I _! r!+ 2(_o + 3)FIF2 - 3FIF2 - 5F_FI - k3(l- F6) + _IF_+ _2Fi

The associated boundary conditions are

Fn(O ) = Fi(O) = Fi(_) = 0 (36)

In order to solve equations (3S) and (36) in terms of functions independent

of the _'s and X's, it is convenient to resolve the F n as follows:

F 1 = _ifl,O + hlfO_ 1

FZ = _2fz,o+ _fll,0 + _lhlfl,l+ h_f0,11+ _2f0,2

= 3 + _klfil, I + _ik_fi,l i + _i_2f12, 0F3 _3f3,0 + _iflll,0

3
+ _ik2fl,2 + _2klf2_l + hlf0,111 + _ik2fO,l_ + _3f0_3

i0



In these equations, subscripts of the f's that precede the commarefer to the
_'s; those following the commarefer to the _'s.

The system of equations that results for the f-functions is

Llfl, 0 = F$2 - i

Llf0, I = F6 - i

(37a)

L2fl,l

L2f2, 0 = F(_2 - i

_JlZ,O= 2FUi,o+ (_o+ _)fl,2o- 3fl,of_',o

=2FSf$,z+2(_o+2)fl,of$,1-3(fl,of$,l+fO,lf_,o)+f,1,0

: f' + (9o+ 2)f_[1- _fO,lfS,zL2f0,11 0,i

L2f0, 2 = F6 - i

(58)

= F$ 2 iL3f3,0

: f,2 + 2F(_f-[z + _(_o+ 3)f' f'L3flll,O 1,0 ,0 1,0 ll,0

- 3fz,of_%_,o- sf_',oflz,O

I_jz2, o : 2FSf_,o + 2F(FI,o + 2(_o + 3)fl,of_,o

- 3fl,of_, 0 - 5f[,of2, 0

L3fll,Z = 2f{,o f'o,1 + 2F$fl,z + 2(_0

- 5fl,of_, I - 3fo,if_l,0

= f,2 ' ' + 2(_ 0 + 5Lsfl,ll 0_i + 2Fofo,ll

- 3(fl,og,n + fo,zfLl

' ' +_(_o+3)fiLsfl, 2 = 2Fofo, 2

LJ2,I = 2F_f$, l + 2(_ 0 + 5)f_

Lzfo,lll

+ 3)(fi f' + ' ' o),0 I_i fo_ifll_

5(f" f" f f'- l,Ofl,l + 0,i ii,0) + ii,0

)(fi,of$,ll + f$,lfi,l)

) - _(f_,ofO,ll + fl,lf_,l) + f,1,1

f' - 5_ _" - " +fl,0,0 0_2 _i,0±0_2 Sfl_0fo_2

f' - 3fo_ " _ 5_'' + f__I 2,0 if2,0 _o_if2_0 _0

' ' - " - 5f"
=2(_ O+3)fO;IfO_ll $fo,ifO,ll o;ifO,ll+fO,ll

Lsfo,12 - 5fo_ifo, 2 r0_if0;2 + f' + f],l0,2

' - i
Lsf0,5 : FO

(59)

±]



Each of the f's satisfies the boundary conditions (eq. (36)).

ENERGY EQUATION

If T is the temperature of the fluid and the fluid properties are assumed
constant, the energy equation is

It is apparent that the temperature at the outer edge of the boundary layer is

not constant but is influenced by the pressure gradient and Joule heating. In

this situation boundary conditions are simplified by introducing the total en-
thalpy

i U 2h =CpT+ 

In terms of a dimensionless enthalpy ratio

h-h 
H ---he _ N (42)

in which h_ and h e are constants denoting the values of the enthalpy at the

wall and external to the boundary layer, respectively, the energy equation be-
comes

_H _H w _2H i - Pr v _2U2
v v y=

Pr _y2 21:b h e - h_ _y2 (45)

The right side of this equation vanishes in the free stream, and since the left

side represents a derivative along a streamline, H (or h) is constant there.

Physically, this means that any kinetic energy lost by the fluid in the free
stream is returned to it as Joule heat.

In certain circumstances the nonhomogeneous term of equation (43) has little

influence in the boundary layer. Obviously, if the Prandtl number is near i, it
is small.

For mercury (Pr = 0.025) the term is negligible for velocities up to ii0 me-

ters per second for the maximum temperature difference (between melting point and

boiling point) of 400 ° C and is negligible for velocities up to 28 meters per

second for a temperature difference of 25 ° C. If a hot gas is being considered_

it is found that, when the fluid has progressed far enough from the stagnation

point for the nonhomogeneous term to be important_ the static temperature has de-

creased to a value at which the conductivity is, perhaps_ an order of magnitude

lower than its stagnation value. In such a case the assumption of constant con-

ductivity made here is no longer valid, and_ in fact_ the magnetohydrodynamic

12



body term may no longer be significant.

Whenthe Prandtl number is set equal to unity in equation (43) and the
boundary-layer transformations (22) and (25) are applied, the equation becomes

HD_+ FH_= 2_(FT]H _ F_Hrl )

This equation has been derived in reference i0 and, as shown (ref. i0), it can be

resolved into a set of ordinary differential equations by expanding H in _:

H = _o(_) + HZ(_)_ + H2(_)_2 +

If an operator D n is defined as

d 2 d

D_----d_2 +F o_- 2n_6

then for each Hn there is an equation

DnH n = R n

with the boundary conditions

Ho(O) = o _o(_) = z_
JHn(o) = _(_) : o n _ z

(4s)

(46)

(47)

(,_8)

The first two of these boundary conditions satisfy definition (42) at the

surface and at the edge of the boundary layer. The conditions on the Hn(n _ i)

require them to vanish both at the surface and at the edge of the boundary layer,

so that they are correction functions to H0 that operate only with the boundary

layer. The Rn are

R0=0

R I = -3FIH $

R2 = 2FNz - 3_lHi - _%H$

R s = 2F_H l - 3mltt _ + 4FIH 8 - 5F2H i - 7FsH $

In order to derive equations defining universal functions, it is necessary

to ma_ke the further expansions

(49)
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}i5 = _5g5,0

HI = _igl,O + _igO,l

+ 2 + 2

I

H Z = _2gz,o _igll,0 + _lhlgl_l hlg0,11 + kzgo, 2

3 2
+ _i_2g12,0 + _iglll,0 + _2hlg2,1 + _l_igll,l

2 5
+ _lhlgl,ll + _i_2gi,2 + hlg0,111 + _i_2g0,12 + h5go,s

The g's are determined by

DoH 0 = 0 "_

D-LgZ,o ---3fZ,O_6

Dlgo_ i = -Sf0, IH$

D2g2, 0 = -5f2,0H _

D2gzz,o--2fl,ogz,o - 3fz,og{,o - _fzl,oH$

°2gl,l:_f$,zgz,o+2fl,ogo,l-3fo,zg{,o-3fz,og$,l-5f_,z_6_

D_go,zz--2f$,z_,i - 3_o,ig$,z - Sfo,zz_&

D2g0,2 = -5f0, 2H_) ..,

Dsgs_ 0 = -7fs,0H _

_,o =_{_,o_,o- _,o_{z,o+_i,o_z_,o- _zz,o_i,o- _zzz,oF_

I)_, z--_,oF_ ,__- _%,z_,o +_6, z_.,o - _,o_ ,z- _,z _t&

o ! !

Dsgl,ll = _f0,11gl,0 - 3fl,Og_, ii + 4f_,ogO,ll - 5fo, llgl, 0 + Zfi,lgO, I

- _o,_i,_+_,_,z -_,_,_ -_z,_z_

_o ,z_=_%,_o,z-_o,z_6,_+_&,_o,_-_o,_ ,_-7%,z_%

D3go_5 = -Tf0_sH0

For each of the g's in equations (S!) to (_3) the boundary conditions

transform to g(O) = g(oo) : O.

14
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COEFFICIENTS OF SERIES EXPANSIONS

In order to apply the solutions to the boundary-layer equations that have

been developed in the preceding section_ it is necessary to convert the outer-

velocity and magnetic-field distributions in terms of X into the functions

_([) and _([) developed as power series• The outer-velocity distribution around

a two-dimensional symmetric blunt body is represented by

U e = U1X + UbX5 + U5X5 + . (54)

It is evident from equation (17) that UI, US, US, depend upon the

magnetic field as well as on the pressure gradient. The variable [ is the in-

tegral

x_= iv Ue dX = Re I _ + 2U I \L] + 5g-_l L] + . .] (_5)

where

UI L2

Rel _ 2v

G_rtler shows that for the expansion

_(_)
U 2

e

- P0 + _i_ + _2_2 + "

(5G)

(57)

the coefficients _i are

_0 = i

_i = Re_ I 3 U5 L2

_3 =
UI 12 Ul2 z_ _iS'/V

• • • • ° • • ° _ • • • • . • • • • o •

(ss)

15



The coefficients in the expansion

_(_) =-z_a 0Ue£- z0 + _l_ + _z_z + " (sg)

depend explicitly upon the specification of the magnetic field as well as the ve-

locity distribution. There are two symmetric types of magnetic field that may be

associated with a blunt body. They correspond to antisymmetric and symmetric

distributions of normal component on the body surface. An example of the first

of these distributions is a two-dimensional dipole field with its axis perpendic-

ular to the axis of the body (sketch (a)),

(a)

while an example of the second is a dipole field with its axis coincident with

the body axis (sketch (b)).

(b)

In the first dipole orientation the normal component of the field

antisymmetric about the origin; therefore,

By = BIX + BsX 3 + .

By is

(6o)

16



Then

where

_0 = 0

RmlRhl

hI = Re I

+ o-y- T£)

(GL)

Rml = ouUIL2

Rhl = _pU--_

The second sort of magnetic field is described by

By = B0 + B2X2 + B4X _ +

The expansion coefficients for h({) are

_0 = RmlRho

_l = RmlRh0 62 B2L2

_lRh0 _ W, _ %T,SB2r,__: _ -%-o _ _o+ B2 ¢

RmlRhO (_ 7 UvL8 IS US L2 US L4_ --_o_ - 7 _-i-+_ _ _-2-

2 UI ')

21 USSL6 UsL 2 B4L4

4 U_ UI Bo

- 4
UsL 2 B2 L2 U2L 4 B2L 2

U I BO + 8 U--_ B-_--

B6L8 B2L2 B4L4 ]

J

(82a)

(_zb)

(6s)

(64)
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1!i these expressions the following definition has been used:

2
B0

Rh0 : _DU_LZ
(6_)

RESULTS OF COMPUTATIONS AND METHOD OF APPLICATION

The "universal" functions defined by equations ($7) to (39) and (S1) to ($5)

have been obtained by numerical integration for Pr = i_ @0 = i_ and _0 : 0_

0.2_ amid i. %3_e computations were performed on an ERA ll05 digital computer.

Double precision accuracy (20 significant figtrces) was used throughout the compu-

tations to ensure an adequate mmmber of significant figures in the final results.

Curves of the functions _re presented in figures 1 to S_ and the values of the

derivatives at the wall are listed in table I.

The functions fi,j' gi_' and so forth are universal in the sense that they

apply to any boundary layer started at the origin according to the values given

to _0 and hO" In the computations presented here _0 is always i_ the value

for a two-dimensional stagnation point; as a result_ the functions computed apply

to any symmletric, blunt body. As explained previously, the magnetic fields to

which the functions apply are either symmetric or antisy_etric about the body

axis and of such strength that the products of the dimensionless numbers are

RmlRhl = 0 (antisymmetric field)

RmlRhO : 0.2, i (symmetric field)

The practical results desired from an analysis of the boundary layer such as

that presented here are the skin friction and the heat transfer along the surface

of the body. The fo_er, when expressed in terms of G_rtler's variables, is

i 0,i"

+ {2[p2f_,o(O)+_2f. .. )] rn,o(O) +h lf{,z(O) +  fS,zl(O) +X2fo,2(o

+ _3[_ _3f" { 2 " 2 "3f_,0 (0) +'l llb0 '0) +h_lfll,1 (0) + _l_lfl,ll (0)

II . I, + ]_Ii -
+ Pl_Zfl_,o(O) + _l_Sfl,2(0) + _XlfZ,l(O) ,,l_O,11l[0)

+ I_2f0,12(0) +_3f0,3 (0) + . .

(s6)
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The procedL_e for obtaining the skin friction in this form is to begin with the

series expansions of the external velocity (eq. (b_)) and the normal component of

the magnetic field at the wall (eq. (_0) or (6S)). The series coefficients may

be obtained either from a solution of the inviscid flow or from experimental

data. 9born them one obtains _(X) (eq. (Sb)), the _'s (eq. (5S)), and the h's

(eq. (_}i) or (L_4)). The second derivatives of F 0 and the f's, evaluated at

the wall_ are given in table i. These are all the numerical values required for

an evaluation of skin friction according to equation (66).

Likewise the heat transfer is &_iven by

k(he - %)%

cp -_ '_'

klh. }....... +

The steps for computing this expression are the same as those for skin friction

with t}le addition of the determination, either analytic or experimental, of the

enthalp:f es he and hw.

CONCLUDINGREMJPd<S

A complete illl_stratio_ of the use of the boundary-layer solutions generated

in the foregoing discussion requires a knowledge of the external inviscid hydro-

maL3_et-'c flow about the blunt body. Such information has proved very difficult

to obtain, both experimentally and s_al}_ically. Reference IS discusses the flow

about a circular cylinder from which a dipole magnetic field emanates. Even with

the restrictions of very small field strength and low conductivity, this problem

proves very difficult; therefore, while an overall drag coefficient can be ex-

tracted from the analysis, the flow is not described in detail.

Without investigating a particular configuration, it is possible to antici-

pate that. the effect of the magnetic field upon the velocity profile, and thus

upon separation, is likely to be much larger than its i_mfluence upon the tempera-

ture profile. This is shown, for exmmple, by the magnitudes of the coefficients

fO,l f0,2
" (0)," (0),fo,5(O) which are coefficients of purely magnetic terms; they

are much larger than the corresponding g's that modify the heat transfer. Thus

R. C. Meyer's conclusion, that the principal effect of the magnetic field on heat

transfer occurs through the modification of the outer flow, is verified to terms

of order three. However, because the effect of the magnetic field upon the sepa-

ration point may be strong, the distance from the stagnation point over which

this statement is true may, in general, be much less than the similarity solution

studied by Meyer would indicate.

Lewis Research Center

National Aeronautics and Space A@ainistration

Cleveland, Ohio, January IS, 1965
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TABLEI. - WALLVALUESOF DERIVATIVES OF UNIVERSAL

VELOCITY AND TEMPERATURE FUNCTIONS

[Blunt body (90 = i); Prandtl number, i.]

(a) Antisymmetric magnetic field (_0 = 0)

f_,0

f"
0,i

f',
2,0

f_'l,0

f_',l

f8, i!

f8,2
fT

fs,0

f"
iii,0

f"
ii,i

f_',ii

f12,0
Ir

fl,2

f_,l

fo, lll

fo,12

fo,s

1.25258 76568 1244"7
! .49584 05676 09244

• 37484 85804 05705

.46454 08895 66152

-.07720 53879 57965

-.12221 20640 84685

-.04796 18827 56966

.55754 69159 47016

.44258 50786 69987

• 02241 54202 50688

.05514 64524 75607

•04461 07472 52109

-.13665 65852 25042

-,ii074 32208 63681

-,10896 79251 52002

• 01190 31220 54659

-.08757 51499 90026

.54548 98882 07614

!

gl,O

g'
0,i

g'
2,0
I

gll_0

gl,l

g'
0,ii

g'
5,0

g'
iii_0
I!

gll_l

gl, ii

gi2,0

gl, 2

g2,1

go _iii

g0,12

g ,3

0.57046 52525 020495

.06211 84021 45842

.04185 72212 59988

.06545 51227 78851

-.02104 68205 50582

-.05001 55056 75644

-.01074 50574 18008

.04555 65514 48835

• 06272 70799 22428

.00825 91654 91095

.01844 65956 69484

•01572 48880 50019

-.05879 61227 09014

-.02831 20924 24717

-.02797 81250 04664

.00540 26247 40087

-,02047 29759 85259

• 04566 94245 21508

21



TABLE !. - Continued. WALL VALUES OF DERIVATIVES OF

UNIVERSAL VELOCITY AND _ERATURE FUNCTIONS

[Blunt body (D0 = i); Prandtl ntumber, i. ]

(b) S_nmetric magnetic field (XO = 0.2)

11

Fo

f"
i_0

f"
0,i

f,,
2,0
If

fll,O

f t,
i,i

f"
O, ii

f"

0,2
f.
3,0

f_ll,O
It

fll,l

f"
i,ii

f_2,0

f T,

1,2
f"
2,i

f,,
0_iii

f"
0,3

1.51060 30130 2%955

.46802 85635 98567

.55579 85554 14712

.44189 18378 88459

-.06596 95769 68878

-.10417 04610 74635

-.0¢079 10050 45455

,33951 48282 39504

.42189 40264 05088

.01711 57715 17790

.04206 27940 12478

.05398 89547 87311

-.11725 96879 10692

-.09474 27895 01056

-.09550 41605 65895

.00905 40412 83318

_.07459 78*709 01883

.32687 29354 87525

gi,o

g_ ,0

g_l,O

IT

go _ii
t_

go_ 2
,,

g3_o
,T

glll, 0

gil,l

g'
i_ii

g_2,0

gl, 2

g_,l

g$_ iii

g'
0_12

go, 3

0.57647 69026 36591

• 05625 91084 43204

• 03774 06599 44879

• 05775 93910 52950

-.01741 37963 78786

-.02468 46998 47401

-.00878 93370 36298

.03945 37867 57151

.05727 78011 53905

.00615 68555 14697

.01367 5604% 66428

.01012 37664 34184

-.05219 81602 91383

-.02334 81249 98091

-.02509 00178 47489

.00249 7'9370 09368

-.01679 75760 76091

.03966 90975 26658
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TABLE i. - Concluded• WALL VALUES OF DERIVATIVES OF

UNIVERSAL VELOCITY AND TEMPERATURE FUNCTIONS

[Blunt body (D0 : 1); Prandtl number, 1. ]

(c) Large symmetric magnetic field (_0 = i)

3_

F o

f{_o

f_ 1
f"

2_0

f_l,O

f_,l

fO_ll

f_,2

f_,o

f_ll_O

f_l,l

f"

i,ii
f"

12_0
f"

1,2

f_,l

f"
0,iii

f"
0,12

f_5

1.S8533 06966 27504

.39808 87798 71235

•29938 68944 84807

.37715 18405 62868

-.04035 06485 64961

-.06520 33463 22469

-.02457 54983 09369

• 28830 16658 76848

.36289 51276 81898

.007%3 29922 53015

•01816 72958 22741

•01489 20154 82165

-•07276 07352 52263

-.05817 50494 45701

-.05744 65405 71772

.00586 48724 a_S9Z4

-.04549 40262 91466

•27958 05871 65514

H6
gi,o

g_,o

g{l,O
!

gl,l

_, ii

g_,o
It

glll, 0
3,

gll, i
3,

gl,ll
f3

g12,0
,,

gl, 2

g2,1
ft

go, iii
,,

go _12
,,

go, 3

0.59534 63267 92991

.04087 91506 54584

.02705 75978 78049

• 04267 69292 28947

-.00957 4-5542 18756

-.01331 71516 38810

-.00466 04516 90449

• 02871 96871 03897

.04277 06196 60540

.00246 58409 97704

•00536 96150 42514

.00390 67180 68167

-.01790 18092 677.14

-.01271 87901 56525

-.01260 68840 13622

• 00094 87582 00696

-.00900 12643 08112

.02915 50070 63649
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